	EPP-SOP-WU07
WCSB, Wageningen University	Version 1.0

EPP - Standard Operating Procedure

(only for selected experiments intended to transfer results from one lab to the other)

Title: Making electro-competent *E. coli* cells and transformation of them

distribution list				
changes to prior version:				
	name	signature	date	
Experimenter 1	Rita Volkers		25/9/2018	

Page | 1 © Rita Volkers

Instruction

Making electro-competent E. coli cells and transformation of them

1. Introduction / Purpose

This protocol describes a method to make *Escherichia coli* cells electro-competent. The method involves one overnight culturing step, followed by several hours of culturing during the day and 1.5 - 2 hours of preparation of electro-competent cells.

The protocol also describes how to do the transformation (electroporation) afterwards.

Keywords: E. coli – electro-competent – transformation - electroporation

2. Equipment and chemicals

2.1. Equipment

For making competent cells:

- Centrifuge for disposable 50 ml tubes that can be cooled to 4°C
- · Shaking incubator
- Spectrophotometer

For transformation:

- Thermomixer or water bath at 37°C
- · Electroporation machine

2.2. Chemicals

- N₂(I)
- Ice

2.3 Bacterial strains

Escherichia coli

2.4 Other materials

For making competent cells:

- 1 sterile 50 ml tube for culturing (Corning mini bioreactor centrifuge tube 50 ml, #431720)
- 8 sterile 50 ml tubes (generic ones, not the ones for culturing)
- 20-30 sterile 1.5 ml eppendorf tubes that don't pop open when submerged in N2(I)
- 1 sterile 1 L Erlenmeyer flask

For transformation:

Page | 2 © Rita Volkers

- · Sterile cooled electroporation cuvette with a 2 mm gap
- Sterile 1 ml syringe
- Sterile needle (BD Microlance; 21G 1.5"- Nr. 2; 0,8 x 40 mm; REF 304432; or a thicker needle)

3 Media and Buffers

For making competent cells:

- 500 ml LB w/o salt (per liter: 10 g tryptone, 5 g yeast extract)
- 1 l ice-cold 10% v/v glycerol (per liter: 100 ml glycerol)

For transformation:

- SOC medium, 0.5 ml per transformation: (per liter: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 0,186 g KCl adjust to pH 7 with NaOH autoclave add 5 ml of sterile 2M MgCl₂ (which is 19 g MgCl₂ in 100 ml) and 4,5 ml of sterile 80% w/v glucose)
- Selective agar plates, depending on the plasmid that will be transformed into E. coli

4 Procedures

Making electro-competent E. coli cells

- Inoculate 5 ml LB w/o salt in a 50 ml culturing tube with E. coli and incubate overnight at 37°C / 250 rpm.
- Next day, first thing in the morning, inoculate 400 ml LB w/o salt in a 1 l Erlenmeyer flask with enough of the overnight culture to reach OD₆₀₀ of 0.2 and incubate for ~3 hours to OD₆₀₀ 0.5-1.0.
- Pre-cool centrifuge to 4°C.
- Transfer culture volume to 8 Greiner tubes of 50 ml and cool on ice for 15 minutes.
- Centrifuge for 10 minutes at 2000g and 4°C.
- Discard supernatant and add 5ml of 10% glycerol, resuspend the pellet in it and then add 45ml of 10% glycerol, shake by hand a few times to mix.
- Centrifuge for 10 minutes at 2000g and 4°C.
- Discard supernatant and add 5ml of 10% glycerol, resuspend the pellet in it and then add 45ml of 10% glycerol, shake by hand a few times to mix.
- · Put on ice for 10 minutes.
- Centrifuge for 10 minutes at 2000g and 4°C.
- Discard supernatant and resuspend the pellet in 1 ml ice-cold 10% glycerol, pool the contents of all 8 tubes into one tube.
- Centrifuge for 5 minutes at 1500g and 4°C.
- Discard supernatant and add 400 µl 10% glycerol (this will result in ~800 µl suspension).
- Make aliquots of 40µl in pre-cooled eppendorf tubes and flash freeze with N₂(l). Store at -80°C.

Page | 3 © Rita Volkers

Transformation of electro-competent E. coli cells

- Thaw an aliquot of electro-competent cells on ice.
- Add 1 μl DNA, mix, and transfer to cold cuvette on ice. Make sure that the cells are at the bottom of the cuvette by gently tapping against it.
- Put the cuvette in the electroporation machine and apply a pulse (2.5 kV, 200-400 ohm, 25 μF).
- Immediately add 0.5 ml SOC to the cuvette.
- Empty the cuvette with help of the syringe and needle and put the contents in a 1.5 ml eppendorf tube.
- Incubate it for 1 hour in thermomixer or waterbath at 37°C (in case of thermomixer, shake at 800 – 1000 rpm).
- Spread the cells on a selective plate, incubate at 37°C overnight or until colonies appear.

5. Remarks / troubleshooting

- The reason for resuspending the cells in 5 ml glycerol solution first before adding the remainder of the 50 ml is that it is easier to resuspend in a smaller volume than in a completely filled tube.
- Competent cells can be stored for 6 to 12 months at -80°C
- · Work sterile during the whole procedure (next to bunsen burner or in flow cabinet)
- After transformation, the cells are spread onto a selective plate. To assure that single colonies appear, two plates can be used instead: one to spread 1/10 of the cells onto, and another one to spread 9/10 of the cells onto. If the transformation was very efficient, the single colonies will appear on the 1/10 plate and a lawn will appear on the 9/10 plate. In the case of a less efficient transformation, single colonies will appear on both plates or only on the 9/10 plate (and nothing on the 1/10 plate).

6. Biosafety

- · Be careful when using needles.
- Avoid skin contact with N₂(I), it can cause cold burns.
- All materials that came into contact with transformed E. coli should be autoclaved before being disposed of.

7. Acknowledgements

IBISBA (grant agreement No 730976) and EmPowerPutida (grant agreement No 635536) projects have received funding from the European Union's Horizon 2020 research and innovation programme.

Page | 4 © Rita Volkers